Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Am J Vet Res ; : 1-8, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38663446

RESUMEN

OBJECTIVE: To evaluate the diagnostic value of pulmonary-vein-to-pulmonary-artery ratio (PV:PA) in dogs with myxomatous mitral valve degeneration (MMVD), classified according to the American College of Veterinary Internal Medicine (ACVIM) consensus guidelines. ANIMALS: 80 client-owned dogs with either MMVD (n = 65) or no cardiovascular disease (control group; n = 15) between August 5, 2020, and July 19, 2023. METHODS: This is a retrospective study. Dogs with MMVD were classified according to ACVIM consensus guidelines. Echocardiograms, thoracic radiographs, and other measurements needed in this study were reviewed in all dogs. Spearman correlation was used to determine the correlation between the PV:PA and the following variables: vertebral heart size, vertebral left atrial size, left-atrium-to-aorta ratio, normalized left ventricular internal diameter, and peak transmitral early diastolic velocity. Receiver operating characteristic (ROC) curve analysis was used to evaluate the value of PV:PA in distinguishing between stages B1 and B2 and stages B2 and C. RESULTS: All conventional indices showed correlations with PV:PA. The area under the ROC curve (AUC) for stages B1 and B2 was 0.83, and the cutoff value for differentiating stage B2 was 1.52. The AUC for stages B2 and C was 0.81, and the cutoff value for differentiating stage C was 2.09. CLINICAL RELEVANCE: PV:PA was significantly different between control and the stage B1 group, stage B1 and B2 group, and stage B2 and C group. PV:PA can be an index that can be used in evaluating MMVD dogs.

2.
Cell Biol Toxicol ; 40(1): 20, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578518

RESUMEN

The epithelial-mesenchymal transition (EMT) and fibroblast activation are major events in idiopathic pulmonary fibrosis pathogenesis. Here, we investigated whether growth arrest-specific protein 6 (Gas6) plays a protective role in lung fibrosis via suppression of the EMT and fibroblast activation. rGas6 administration inhibited the EMT in isolated mouse ATII cells 14 days post-BLM treatment based on morphologic cellular alterations, changes in mRNA and protein expression profiles of EMT markers, and induction of EMT-activating transcription factors. BLM-induced increases in gene expression of fibroblast activation-related markers and the invasive capacity of primary lung fibroblasts in primary lung fibroblasts were reversed by rGas6 administration. Furthermore, the hydroxyproline content and collagen accumulation in interstitial areas with damaged alveolar structures in lung tissue were reduced by rGas6 administration. Targeting Gas6/Axl signaling events with specific inhibitors of Axl (BGB324), COX-2 (NS-398), EP1/EP2 receptor (AH-6809), or PGD2 DP2 receptor (BAY-u3405) reversed the inhibitory effects of rGas6 on EMT and fibroblast activation. Finally, we confirmed the antifibrotic effects of Gas6 using Gas6-/- mice. Therefore, Gas6/Axl signaling events play a potential role in inhibition of EMT process and fibroblast activation via COX-2-derived PGE2 and PGD2 production, ultimately preventing the development of pulmonary fibrosis.


Asunto(s)
Transición Epitelial-Mesenquimal , Fibroblastos , Péptidos y Proteínas de Señalización Intercelular , Animales , Ratones , Ciclooxigenasa 2/metabolismo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Péptidos y Proteínas de Señalización Intercelular/farmacología , Pulmón/metabolismo
3.
J Environ Manage ; 358: 120805, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599085

RESUMEN

Soil monitoring in abandoned mine areas is important from the perspective of ecological and human health risk. Arsenic (As) is a predominant metalloid contaminant in abandoned mine area and its behavior has been influenced by various soil characteristics. Bioindicator can be a useful tool in terms of testing the extent to which they are uptaken by plants bioavailability. Eighteen soils near the mine tailings dam were collected to investigate the effect of As contamination on As absorption by Brassica juncea. The pH range of the experimental soils was between 4.90 and 8.55, and the total As concentrations were between 34 mg kg-1 and 3017 mg kg-1. The bioavailability of As was evaluated by Olsen method, and B. juncea was cultivated in eighteen soils for 3 weeks. Principal component analysis, correlation, and multiple regression analysis were performed to estimate a significant factor affecting As uptake by B. juncea. All statistical results indicated that As bioavailability in soil is the main factor affecting As uptake in root and shoot of B. juncea. Although translocation process, the amount of As in shoot was exponentially explained by As bioavailability in soil. This result suggests that the contamination and bioavailability of As can be confirmed only by analyzing the shoot of B. juncea, which is be easily found in environmental ecosystem, and implies the applicability of B. juncea as a bioindicator for the monitoring of As contamination and its behavior in soil ecosystem.


Asunto(s)
Arsénico , Monitoreo del Ambiente , Minería , Planta de la Mostaza , Contaminantes del Suelo , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismo , Planta de la Mostaza/metabolismo , Suelo/química , Arsénico/análisis , Arsénico/metabolismo , Monitoreo del Ambiente/métodos
4.
Phys Rev E ; 109(2-1): 024313, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38491583

RESUMEN

Multiplex networks are collections of networks with identical nodes but distinct layers of edges. They are genuine representations of a large variety of real systems whose elements interact in multiple fashions or flavors. However, multiplex networks are not always simple to observe in the real world; often, only partial information on the layer structure of the networks is available, whereas the remaining information is in the form of aggregated, single-layer networks. Recent works have proposed solutions to the problem of reconstructing the hidden multiplexity of single-layer networks using tools proper for network science. Here, we develop a machine-learning framework that takes advantage of graph embeddings, i.e., representations of networks in geometric space. We validate the framework in systematic experiments aimed at the reconstruction of synthetic and real-world multiplex networks, providing evidence that our proposed framework not only accomplishes its intended task, but often outperforms existing reconstruction techniques.

5.
Sci Rep ; 14(1): 3925, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38366023

RESUMEN

Solute carrier family (SLC) transporters are expressed in the digestive system and play important roles in maintaining physiological functions in the body. In addition, SLC transporters act as oncoproteins or tumor-suppressor proteins during the development, progression, and metastasis of various digestive system cancers. SLC22A18, a member of the SLC22 gene family, is an orphan transporter with an unknown endogenous substrate. Previous study revealed that SLC22A18 is downregulated in colorectal cancer tissues and that it acts as a suppressor in colorectal cancer, although the effects of SLC22A18 variants on colon cancer cell proliferation, migration, and invasion are unknown. Therefore, in this study, we identified SLC22A18 variants found in multiple populations by searching public databases and determined the in vitro effects of these missense variations on transporter expression and cancer progression. Our results indicated that three missense SLC22A18 variants-p.Ala6Thr, p.Arg12Gln, and p.Arg86His-had significantly lower cell expression than the wild type, possibly owing to intracellular degradation. Furthermore, these three variants caused significantly higher proliferation, migration, and invasion of colon cancer cells than the wild type. Our findings suggest that missense variants of SLC22A18 can potentially serve as biomarkers or prognostic tools that enable clinicians to predict colorectal cancer progression.


Asunto(s)
Neoplasias del Colon , Proteínas de Transporte de Catión Orgánico , Humanos , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Neoplasias del Colon/genética , Regulación Neoplásica de la Expresión Génica , Pronóstico , Proteínas Supresoras de Tumor/genética , Proteínas de Transporte de Catión Orgánico/genética
6.
Sensors (Basel) ; 23(22)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38005599

RESUMEN

Recently, security monitoring facilities have mainly adopted artificial intelligence (AI) technology to provide both increased security and improved performance. However, there are technical challenges in the pursuit of elevating system performance, automation, and security efficiency. In this paper, we proposed intelligent anomaly detection and classification based on deep learning (DL) using multi-modal fusion. To verify the method, we combined two DL-based schemes, such as (i) the 3D Convolutional AutoEncoder (3D-AE) for anomaly detection and (ii) the SlowFast neural network for anomaly classification. The 3D-AE can detect occurrence points of abnormal events and generate regions of interest (ROI) by the points. The SlowFast model can classify abnormal events using the ROI. These multi-modal approaches can complement weaknesses and leverage strengths in the existing security system. To enhance anomaly learning effectiveness, we also attempted to create a new dataset using the virtual environment in Grand Theft Auto 5 (GTA5). The dataset consists of 400 abnormal-state data and 78 normal-state data with clip sizes in the 8-20 s range. Virtual data collection can also supplement the original dataset, as replicating abnormal states in the real world is challenging. Consequently, the proposed method can achieve a classification accuracy of 85%, which is higher compared to the 77.5% accuracy achieved when only employing the single classification model. Furthermore, we validated the trained model with the GTA dataset by using a real-world assault class dataset, consisting of 1300 instances that we reproduced. As a result, 1100 data as the assault were classified and achieved 83.5% accuracy. This also shows that the proposed method can provide high performance in real-world environments.

7.
Int J Mol Sci ; 24(19)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37834250

RESUMEN

We investigated whether the response to anti-tumor necrosis factor (anti-TNF) treatment varied according to inflammatory tissue characteristics in Crohn's disease (CD). Bulk RNA sequencing (RNA-seq) data were obtained from inflamed and non-inflamed tissues from 170 patients with CD. The samples were clustered based on gene expression profiles using principal coordinate analysis (PCA). Cellular heterogeneity was inferred using CiberSortx, with bulk RNA-seq data. The PCA results displayed two clusters of CD-inflamed samples: one close to (Inflamed_1) and the other far away (Inflamed_2) from the non-inflamed samples. Inflamed_1 was rich in anti-TNF durable responders (DRs), and Inflamed_2 was enriched in non-durable responders (NDRs). The CiberSortx results showed that the cell fraction of activated fibroblasts was six times higher in Inflamed_2 than in Inflamed_1. Validation with public gene expression datasets (GSE16879) revealed that the activated fibroblasts were enriched in NDRs over Next, we used DRs by 1.9 times pre-treatment and 7.5 times after treatment. Fibroblast activation protein (FAP) was overexpressed in the Inflamed_2 and was also overexpressed in the NDRs in both the RISK and GSE16879 datasets. The activation of fibroblasts may play a role in resistance to anti-TNF therapy. Characterizing fibroblasts in inflamed tissues at diagnosis may help to identify patients who are likely to respond to anti-TNF therapy.


Asunto(s)
Enfermedad de Crohn , Humanos , Enfermedad de Crohn/tratamiento farmacológico , Enfermedad de Crohn/genética , Enfermedad de Crohn/metabolismo , Inhibidores del Factor de Necrosis Tumoral , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , ARN/metabolismo , Fibroblastos/metabolismo , Necrosis/metabolismo
8.
Environ Int ; 175: 107963, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37192573

RESUMEN

Arsenic (As)-contaminated soil inevitably exists in nature and has become a global challenge for a sustainable future. Current processes for As capture using natural and structurally engineered nanomaterials are neither scientifically nor economically viable. Here, we established a feasible strategy to enhance As-capture efficiency and ecosystem health by structurally reorganizing iron oxyhydroxide, a natural As stabilizer. We propose crystallization to reorganize FeOOH-acetate nanoplatelets (r-FAN), which is universal for either scalable chemical synthesis or reproduction from natural iron oxyhydroxide phases. The r-FAN with wide interlayer spacing immobilizes As species through a synergistic mechanism of electrostatic intercalation and surface chemisorption. The r-FAN rehabilitates the ecological fitness of As-contaminated artificial and mine soils, as manifested by the integrated bioassay results of collembolan and plants. Our findings will serve as a cornerstone for crystallization-based material engineering for sustainable environmental applications and for understanding the interactions between soil, nanoparticles, and contaminants.


Asunto(s)
Arsénico , Contaminantes del Suelo , Arsénico/análisis , Ecosistema , Cristalización , Contaminantes del Suelo/análisis , Suelo/química
9.
Antioxidants (Basel) ; 12(5)2023 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-37237925

RESUMEN

Cardiac tissue damage following ischemia leads to cardiomyocyte apoptosis and myocardial fibrosis. Epigallocatechin-3-gallate (EGCG), an active polyphenol flavonoid or catechin, exerts bioactivity in tissues with various diseases and protects ischemic myocardium; however, its association with the endothelial-to-mesenchymal transition (EndMT) is unknown. Human umbilical vein endothelial cells (HUVECs) pretreated with transforming growth factor ß2 (TGF-ß2) and interleukin 1ß (IL-1ß) were treated with EGCG to verify cellular function. In addition, EGCG is involved in RhoA GTPase transmission, resulting in reduced cell mobility, oxidative stress, and inflammation-related factors. A mouse myocardial infarction (MI) model was used to confirm the association between EGCG and EndMT in vivo. In the EGCG-treated group, ischemic tissue was regenerated by regulating proteins involved in the EndMT process, and cardioprotection was induced by positively regulating apoptosis and fibrosis of cardiomyocytes. Furthermore, EGCG can reactivate myocardial function due to EndMT inhibition. In summary, our findings confirm that EGCG is an impact activator controlling the cardiac EndMT process derived from ischemic conditions and suggest that supplementation with EGCG may be beneficial in the prevention of cardiovascular disease.

10.
Bioeng Transl Med ; 8(3): e10461, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37206227

RESUMEN

Tumor cells can respond to therapeutic agents by morphologic alternations including formation of tunneling nanotubes. Using tomographic microscope, which can detect the internal structure of cells, we found that mitochondria within breast tumor cells migrate to an adjacent tumor cell through a tunneling nanotube. To investigate the relationship between mitochondria and tunneling nanotubes, mitochondria were passed through a microfluidic device that mimick tunneling nanotubes. Mitochondria, through the microfluidic device, released endonuclease G (Endo G) into adjacent tumor cells, which we referred to herein as unsealed mitochondria. Although unsealed mitochondria did not induce cell death by themselves, they induced apoptosis of tumor cells in response to caspase-3. Importantly, Endo G-depleted mitochondria were ineffective as lethal agents. Moreover, unsealed mitochondria had synergistic apoptotic effects with doxorubicin in further increasing tumor cell death. Thus, we show that the mitochondria of microfluidics can provide novel strategies toward tumor cell death.

11.
Polymers (Basel) ; 16(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38201680

RESUMEN

Vast amounts of dyeing wastewater released from the textile industry can not only cause water pollution but also have negative effects on the human body, such as skin irritation and respiratory diseases. Dye adsorption technology is necessary for the treatment of wastewater discharged from the dyeing industry and for environmental improvement. However, to remove dyeing wastewater, more energy and solvents are used to fabricate adsorbents, or excessive energy is used to filter dyeing wastewater out, resulting in more environmental pollution. Therefore, it is necessary to develop a method of filtering dyeing wastewater in a more environmentally friendly manner by minimizing the use of solvents and energy. In this study, we modified the surface of a textile substrate through UV irradiation to create a monomer capable of facilely bonding with dyes. Employing the UV photografting method, we were able to produce a dye adsorption filter in a more environmentally friendly manner, minimizing solvent usage and heat energy consumption required for absorbent synthesis. At a monomer concentration of 10%, the fabricated filter exhibited a dye removal efficiency of 97.34% after 24 h, all without the need for a pressure treatment or temperature increase. Moreover, it displayed an adsorption capacity of approximately 77.88 mg per 1 g of filter material.

12.
Sci Rep ; 12(1): 22282, 2022 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-36566289

RESUMEN

The ATP-binding cassette subfamily 4 (ABCA4), a transporter, is localized within the photoreceptors of the retina, and its genetic variants cause retinal dystrophy. Despite the clinical importance of the ABCA4 transporter, a few studies have investigated the function of each variant. In this study, we functionally characterized ABCA4 variants found in Korean patients with Stargardt disease or variants of the ABCA4 promoter region. We observed that four missense variants-p.Arg290Gln, p.Thr1117Ala, p.Cys1140Trp, and p.Asn1588Tyr-significantly decreased ABCA4 expression on the plasma membrane, which could be due to intracellular degradation. There are four major haplotypes in the ABCA4 proximal promoter. We observed that the H1 haplotype (c.-761C>A) indicated significantly increased luciferase activity compared to that of the wild-type, whereas the H3 haplotype (c.-1086A>C) indicated significantly decreased luciferase activity (P < 0.01 and 0.001, respectively). In addition, c.-900A>T in the H2 haplotype exhibited significantly increased luciferase activity compared with that of the wild-type. Two transcription factors, GATA-2 and HLF, were found to function as enhancers of ABCA4 transcription. Our findings suggest that ABCA4 variants in patients with Stargardt disease affect ABCA4 expression. Furthermore, common variants of the ABCA4 proximal promoter alter the ABCA4 transcriptional activity, which is regulated by GATA-2 and HLF transcription factors.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Enfermedad de Stargardt , Humanos , Transportadoras de Casetes de Unión a ATP/genética , Mutación Missense , Retina/patología , Distrofias Retinianas/genética , Enfermedad de Stargardt/genética
13.
J Biol Eng ; 16(1): 29, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36319989

RESUMEN

Chronic myeloid leukemia is generally required bone marrow biopsy for diagnosis. Although examining peripheral blood is less invasive, it has not been fully validated as a routine diagnostic test due to suboptimal sensitivity. To overcome this limitation, a number of methodologies based on microfluidics have been developed for sorting circulating tumor cells from peripheral blood of patients with leukemia.In order to develop a more convenient method, we designed an analysis protocol using motion microscopy that amplifies cellular micro motions in a captured video by re-rendering pixels to generate extreme magnified visuals. Intriguingly, no fluctuations around leukemic myeloblasts were observed with a motion microscope at any wavelength of 0-10 Hz. However, use of 0.05% hyaluronic acid, one type of non-newtonian fluid, demonstrated fluctuations around leukemic myeloblasts under conditions of 25 µm/s and 0.5-1.5 Hz with a motion microscope.Thus, the non-invasive detection of leukemic myeloblasts can offer a valuable supplementary diagnostic tool for assessment of drug efficacy for monitoring patients with chronic myeloid leukemia.

14.
Biol Proced Online ; 24(1): 16, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36289539

RESUMEN

BACKGROUND: Micro RNA of Marsupenaeus japonicas has been known to promote apoptosis of tumor cells. However, the detailed mechanisms are not well understood. RESULTS: Using tomographic microscope, which can detect the internal structure of cells, we observed breast tumor cells following treatment of the miRNA. Intriguingly, we found that mitochondria migrate to an adjacent tumor cells through a tunneling nanotube. To recapitulate this process, we engineered a microfluidic device through which mitochondria were transferred. We show that this mitochondrial transfer process released endonuclease G (Endo G) into tumor cells, which we referred to herein as unsealed mitochondria. Importantly, Endo G depleted mitochondria alone did not have tumoricidal effects. Moreover, unsealed mitochondria had synergistic apoptotic effects with subtoxic dose of doxorubicin thereby mitigating cardiotoxicity. CONCLUSIONS: Together, we show that the mitochondrial transfer through microfluidics can provide potential novel strategies towards tumor cell death.

15.
BMC Cancer ; 22(1): 341, 2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35351071

RESUMEN

BACKGROUND: Since colon cancer stem cells (CSCs) play an important role in chemoresistance and in tumor recurrence and metastasis, targeting of CSCs has emerged as a sophisticated strategy for cancer therapy. α-mangostin (αM) has been confirmed to have antiproliferative and apoptotic effects on cancer cells. This study aimed to evaluate the selective inhibition of αM on CSCs in colorectal cancer (CRC) and the suppressive effect on 5-fluorouracil (5-FU)-induced CSCs. METHODS: The cell viability assay was performed to determine the optimal concentration of αM. A sphere forming assay and flow cytometry with CSC markers were carried out to evaluate the αM-mediated inhibition of CSCs. Western blot analysis and quantitative real-time PCR were performed to investigate the effects of αM on the Notch signaling pathway and colon CSCs. The in vivo anticancer efficacy of αM in combination with 5-FU was investigated using a xenograft mouse model. RESULTS: αM inhibited the cell viability and reduced the number of spheres in HT29 and SW620 cells. αM treatment decreased CSCs and suppressed the 5-FU-induced an increase in CSCs on flow cytometry. αM markedly suppressed Notch1, NICD1, and Hes1 in the Notch signaling pathway in a time- and dose-dependent manner. Moreover, αM attenuated CSC markers CD44 and CD133, in a manner similar to that upon DAPT treatment, in HT29 cells. In xenograft mice, the tumor and CSC makers were suppressed in the αM group and in the αM group with 5-FU treatment. CONCLUSION: This study shows that low-dose αM inhibits CSCs in CRC and suppresses 5-FU-induced augmentation of CSCs via the Notch signaling pathway.


Asunto(s)
Neoplasias del Colon , Animales , Línea Celular Tumoral , Neoplasias del Colon/patología , Humanos , Ratones , Recurrencia Local de Neoplasia/patología , Células Madre Neoplásicas/metabolismo , Xantonas
16.
Biomolecules ; 12(3)2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35327639

RESUMEN

Signal transducer and activator of transcription 6 (STAT6) promotes an anti-inflammatory process by inducing the development of M2 macrophages. We investigated whether modulating STAT6 activity in macrophages using AS1517499, the specific STAT6 inhibitor, affects the restoration of homeostasis after an inflammatory insult by regulating PPARγ expression and activity. Administration of AS1517499 suppressed the enhanced STAT6 phosphorylation and nuclear translocation observed in peritoneal macrophages after zymosan injection. In addition, AS1517499 delayed resolution of acute inflammation as evidenced by enhanced secretion of pro-inflammatory cytokines, reduced secretion of anti-inflammatory cytokines in PLF and supernatants from peritoneal macrophages, and exaggerated neutrophil numbers and total protein levels in PLF. We demonstrate temporal increases in annexin A1 (AnxA1) protein and mRNA levels in peritoneal lavage fluid (PLF), peritoneal macrophages, and spleen in a murine model of zymosan-induced acute peritonitis. In vitro priming of mouse bone marrow-derived macrophages (BMDM) and peritoneal macrophages with AnxA1 induced STAT6 activation with enhanced PPARγ expression and activity. Using AS1517499, we demonstrate that inhibition of STAT6 activation delayed recovery of PPARγ expression and activity, as well as impaired efferocytosis. Taken together, these results suggest that activation of the STAT6 signaling pathway mediates PPARγ expression and activation in macrophages to resolve acute inflammation.


Asunto(s)
Macrófagos , PPAR gamma , Pirimidinas , Factor de Transcripción STAT6 , Animales , Citocinas/metabolismo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Macrófagos/metabolismo , Ratones , PPAR gamma/genética , PPAR gamma/metabolismo , Pirimidinas/farmacología , Factor de Transcripción STAT6/metabolismo , Zimosan/farmacología
17.
Metab Eng ; 70: 12-22, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34990848

RESUMEN

Predictive modeling tools for assessing microbial communities are important for realizing transformative capabilities of microbiomes in agriculture, ecology, and medicine. Constraint-based community-scale metabolic modeling is unique in its potential for making mechanistic predictions regarding both the structure and function of microbial communities. However, accessing this potential requires an understanding of key physicochemical constraints, which are typically considered on a per-species basis. What is needed is a means of incorporating global constraints relevant to microbial ecology into community models. Resource-allocation constraint, which describes how limited resources should be distributed to different cellular processes, sets limits on the efficiency of metabolic and ecological processes. In this study, we investigate the implications of resource-allocation constraints in community-scale metabolic modeling through a simple mechanism-agnostic implementation of resource-allocation constraints directly at the flux level. By systematically performing single-, two-, and multi-species growth simulations, we show that resource-allocation constraints are indispensable for predicting the structure and function of microbial communities. Our findings call for a scalable workflow for implementing a mechanistic version of resource-allocation constraints to ultimately harness the full potential of community-scale metabolic modeling tools.


Asunto(s)
Microbiota
18.
Materials (Basel) ; 14(15)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34361304

RESUMEN

Various types of organic and inorganic materials are widely examined and applied into the arsenic (As) contaminated soil to stabilize As bioavailability and to enhance soil quality as an amendment. This study deals with two types of amendments: biochar for organic amendment and acid mine drainage sludge (AMDS) for inorganic amendment. Each amendment was applied in two types of As contaminated soils: one showed low contaminated concentration and acid property and the other showed high contaminated concentration and alkali property. In order to comprehensively evaluate the effect of amendments on As contaminated soil, chemical (As bioavailability), biological phytotoxicity (Lactuca sativa), soil respiration activity, dehydrogenase activity, urease activity, ß-glucosidase activity, and acid/alkali phosphomonoesterase activity, an ecological (total bacterial cells and total metagenomics DNA at the phylum level) assessment was conducted. Both amendments increased soil pH and dissolved organic carbon (DOC), which changes the bioavailability of As. In reducing phytotoxicity to As, the AMDS was the most effective regardless of soil types. Although soil enzyme activity results were not consistent with amendments types and soil types, bacterial diversity was increased after amendment application in acid soil. In acid soil, the results of principal component analysis represented that AMDS contributes to improve soil quality through the reduction in As bioavailability and the correction of soil pH from acidic to neutral condition, despite the increases in DOC. However, soil DOC had a negative effect on As bioavailability, phytotoxicity and some enzyme activity in alkali soil. Taken together, it is necessary to comprehensively evaluate the interaction of chemical, biological, and ecological properties according to soil pH in the decision-making stages for the selection of appropriate soil restoration material.

19.
Transl Clin Pharmacol ; 29(2): 92-106, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34235122

RESUMEN

Insulin sensitizers, while effective in glucose-lowering for diabetes control, are linked to an increased risk of heart disease through mechanisms that are not well understood. In this study, we investigated the molecular mechanisms underlying the effects of insulin sensitization on cardiac sinus node dysfunction. We used pharmacologic or genetic approaches to enhance insulin sensitivity, by treating with pioglitazone or rosiglitazone, or through phosphatase and tensin homolog (PTEN) deletion in cardiomyocytes respectively. We employed an angiotensin II (Ang II)-induced hypertensive animal model which causes sinus node dysfunction and accumulation of oxidized calcium/calmodulin-dependent protein kinase II (CaMKII), which also serves as a biomarker for this defect. While neither PTEN deficiency nor insulin sensitizers caused sinus node dysfunction in normotensive mice, both accelerated the onset of sinus node dysfunction and CaMKII oxidation in hypertensive mice. These abnormalities were accompanied by a significant defect in autophagy as revealed by unc-51 like autophagy activating kinase 1 (ULK1) signaling. Indeed, mice deficient in ulk1 in cardiomyocytes and the sinus node also showed early onset of slow atrial impulse conduction with frequent sinus pauses and upregulated CaMKII oxidation following Ang II infusion similar to that seen with PTEN deficiency, or treatment with insulin sensitizers. To further elucidate the role of autophagy in sinus node dysfunction, we treated mice with a peptide D-Tat-beclin1 that enhanced autophagy, which significantly abrogated the frequent sinus pauses and accumulation of oxidized CaMKII induced by insulin sensitizers treatment, or PTEN deficiency in hypertensive animals. Together, these findings provide clear evidence of the detrimental cardiac effects of insulin sensitization that occurs through failure of autophagy-mediated proteolytic clearance.

20.
Environ Geochem Health ; 43(10): 3953-3966, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33768350

RESUMEN

Mine waste from abandoned mines poses a risk to soil ecosystems due to the dispersion of arsenic (As) in the mine waste to the nearby soil environment. Because the bioavailability of As varies depending on the As chemical fraction and exposure conditions, chemical assessment of As fractions in soil around mine waste is essential to understand their impact on soil ecosystem. Here, six sites around the mine waste were selected for investigating toxic effects of As-contaminant soil on Collembola community. To measure the As chemical fraction in soil and bioavailability, Wenzel sequential extraction employed. Meanwhile, the collembolans that live in each sampling site were identified at the species level, and the characteristics and composition of the collembola community were investigated. The mobility fraction (F1 + F2 + F3; MF) was related to the risk to the collembolan community, and the adverse impact of high MF appeared to lead to a decrease in abundance, richness, and Shannon index. According to non-metric multidimensional scaling analysis, F1, F2, F3, and pH were shown as the significant factor explaining the NMDS space. Especially, the sampling site with the highest concentration of F3 showed statistically different species composition from the other sites. In the case of As-contaminated soil around the old mine waste, the toxic effects of the remaining F3 in soil, as well as that of F1 and F2, should be fully considered. This study suggested that collembolan community could be used for understanding the impact of bioavailable As fraction in the old abandoned mine area.


Asunto(s)
Arsénico , Contaminantes del Suelo , Arsénico/análisis , Arsénico/toxicidad , Ecosistema , Minería , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...